

NL Journal of Dentistry and Oral Sciences

(ISSN: 3049-1053)

Volume 3 Issue 1 February 2026

Review Article

Artificial Intelligence in Oral Implantology: A Narrative Review of Current Applications, Challenges and Future Directions

Arpit Sikri^{1*} | Jyotsana Sikri² |

1. Professor & Post Graduate Teacher, Department of Prosthodontics, Crown & Bridge and Oral Implantology, Bhojia Dental College & Hospital, Budh (Baddi), Teh. Baddi, Distt. Solan, Himachal Pradesh, India.
2. Associate Professor & Post Graduate Teacher, Department of Conservative Dentistry & Endodontics, Bhojia Dental College & Hospital, Budh (Baddi), Teh. Baddi, Distt. Solan, Himachal Pradesh, India.

***Corresponding Author:** Arpit Sikri, Professor & Post Graduate Teacher, Department of Prosthodontics, Crown & Bridge and Oral Implantology, Bhojia Dental College & Hospital, Budh (Baddi), Teh. Baddi, Distt. Solan, Himachal Pradesh, India.

doi: 10.71168/NDO.03.01.141

Received Date: January 31- 2025

Publication Date: February 07- 2026

Abstract: The field of oral implantology has witnessed remarkable technological evolution, and the integration of artificial intelligence (AI) promises to further advance diagnostics, treatment planning, surgical execution, and postoperative monitoring. This narrative review explores how AI—including machine learning (ML), deep learning (DL), convolutional neural networks (CNNs), robotics, and augmented reality (AR)/virtual reality (VR) systems—is being applied in dental implantology. Key areas of application include anatomical landmark detection, bone quality assessment, implant position planning, implant outcome prediction, and automated prosthetic design. Current limitations, such as data quality and quantity, lack of standardization, ethical and legal concerns, and challenges in clinical integration, are also highlighted. Finally, future prospects—including personalized implant strategies, fully automated surgical systems, and enhanced decision-support tools—are discussed. By synthesizing recent literature, this review aims to provide prosthodontists and implantologists with an updated perspective on AI's transformative potential in implant dentistry.

Keywords: Artificial intelligence, Deep learning, Dental implants, Image analysis, Implant-prosthesis, Implantology, Machine learning, Robotics, Treatment planning.

Introduction

Dental implantology has become a mainstay of prosthodontic rehabilitation for partially and completely edentulous patients. The success of implant therapy depends on accurate diagnosis, appropriate treatment planning, precise surgical placement, and long-term monitoring of osseointegration and prosthetic function [1].

Traditional workflows are highly dependent on clinician expertise, involve labor-intensive steps, and may suffer from variability in interpretation, planning and execution [2].

In recent years, artificial intelligence (AI) has emerged as a transformative technology in healthcare, offering capabilities such as pattern recognition, prediction, automation and decision support [3]. In dentistry, AI is increasingly being employed for image interpretation, patient-specific treatment planning, real-time surgical guidance and outcome forecasting. In the context of implantology, AI holds promise to enhance precision, reduce human error, optimize workflow efficiency and potentially improve prognostic outcomes [4].

This manuscript provides an elaborated narrative of the role of AI in oral implantology—covering the spectrum from diagnostic imaging through planning to execution and follow-up. It also critically analyses current literature, underscores limitations and proposes directions for future research.

Discussion

Artificial intelligence (AI) has rapidly emerged as a transformative force in modern dentistry, particularly within the domain of oral implantology. Its integration with digital technologies—such as cone-beam computed tomography (CBCT), computer-aided design/computer-aided manufacturing (CAD/CAM), and guided surgery—has significantly expanded the precision, predictability, and efficiency of implant treatment workflows. In recent years, the convergence of AI with machine learning (ML), deep learning (DL), and computer vision techniques has enabled automated data analysis, intelligent decision-making, and enhanced clinical outcomes. This discussion synthesizes current evidence on the applications of AI across the diagnostic, planning, surgical, and prosthetic phases of implant therapy, while critically examining its limitations, ethical considerations, and future potential in clinical practice.

AI in Diagnostic Imaging and Anatomical Landmark Detection

A foundational application of AI in implantology is the automated interpretation of diagnostic imaging—such as two-dimensional panoramic radiographs and three-dimensional cone-beam computed tomography (CBCT) [5]. Studies show that deep learning algorithms can accurately delineate anatomical structures such as the inferior alveolar nerve canal, maxillary sinus floor, alveolar bone boundaries and teeth [6,7]. For example, a systematic review noted that AI models used image data (72 % 2D, 28 % 3D) in implantology tasks such as bone classification and implant planning [8]. Another narrative review pointed out how AI-driven image analysis significantly improves diagnostic precision in implant dentistry [9].

Such automated landmark detection is critical to avoid complications (nerve injury, sinus perforation), particularly in complex surgical cases. Accurate identification of bone dimensions and quality aids in selecting implant size, angulation and position [10]. However, challenges remain in obtaining high-quality annotated datasets, dealing with artefacts (metallic restorations) and ensuring generalizability across diverse populations.

AI in Treatment Planning and Implant Positioning

Beyond diagnostics, AI is being applied to treatment planning in implantology. One systematic review concluded that AI-based implant planning demonstrates improvement in precision and predictability compared to conventional methods [11]. In guided implant placement workflows, AI algorithms assist in suggesting optimal implant location, angulation, size and prosthetic emergence profile based on patient anatomy, bone availability and prosthetic considerations [12].

Robotics and navigation systems powered by AI further enhance the surgeon's ability to execute the plan with high accuracy. A recent review described how robotic and AI systems in prosthodontics and oral implantology aim to improve dependability, accuracy, precision and efficiency [13]. These technologies may reduce surgical time, minimize human error and streamline the workflow from digital planning to prosthesis delivery.

AI for Outcome Prediction, Prognostics and Prosthetic Design

An emerging frontier in implantology is using AI to predict implant success, risk of complications (e.g., perimplantitis), and prosthetic fit. For instance, one review highlighted that AI models can serve as decision-support tools by predicting osseointegration success, detecting early signs of complications and tailoring strategies accordingly [14]. Prosthetic design workflows (CAD/CAM) are also being enhanced by AI-driven automation, enabling individualized prosthesis fabrication and reducing manual adjustments. One narrative review in prosthodontics and implantology pointed out that AI aids in prosthetic design, patient documentation, management of missing teeth and functional appliance design [15].

Clinical Evidence and Application

Clinical or in-vivo studies remain relatively limited but promising. One reported in-vivo study compared conventional vs AI-assisted implant workflows, showing improved implant placement accuracy, better prosthetic fit, increased patient satisfaction and a reduction in procedural time and complications in the AI-assisted group [16]. The pace of publications in AI-implantology increased significantly around 2022 and remains on an upward trend [17].

Limitations, Challenges and Ethical Considerations

Despite the potential, several limitations restrain widespread adoption of AI in implantology [18-21].

Key issues include:

- **Data quality and availability:** Many AI models require large annotated datasets; in dentistry, such datasets may be limited, heterogenous or biased.
- **Standardization and generalizability:** AI models often trained on specific populations or imaging systems may not generalize to different ethnicities, anatomies or hardware.

- **Clinical integration and workflow:** Bridging the gap from prototype to real-world clinical workflow involves regulatory approval, cost, training, and clinician acceptance.
- **Interpretability:** Many deep learning models behave as “black boxes,” raising issues regarding clinician trust, accountability and medico-legal liability.
- **Ethical and legal issues:** Concerns include data privacy, algorithmic bias, fairness, patient consent and responsibility for AI-driven decisions.
- **Cost-effectiveness:** The investment in hardware, software and training vs tangible patient outcomes remains to be fully evaluated.
- **Clinical validation:** Large multicentre prospective trials are needed to validate performance, safety and long-term outcomes of AI tools in implantology.

Synthesis and Implications for Clinical Practice

Given the current evidence, the integration of AI in oral implantology offers several tangible benefits: enhanced diagnostic accuracy, improved planning precision, streamlined workflows and potential for personalized implant strategies. Clinicians and prosthodontists should remain aware of these developments and consider how they may gradually integrate into practice—starting with digital imaging, guided planning platforms and CAD/CAM prosthetics augmented by AI [22].

However, it is essential to adopt a cautious and evidence-based approach. Until robust clinical outcomes and cost-benefit data are available, AI should be viewed as a decision-support adjunct rather than a replacement for clinical judgement. Implantologists should contribute to high-quality data collection, collaborate in research, and remain vigilant regarding ethical and legal implications [23].

From an educational perspective, implantology training programmes should incorporate awareness of AI, digital workflows and critical appraisal of AI tools. For researchers, future directions include: development of open-source annotated implantology datasets, multicentre clinical validation of AI tools, exploration of AI-driven robotics and navigation in live implant surgery, and health-economics assessments [24].

Conclusion

Artificial intelligence is poised to transform oral implantology by enhancing diagnostics, improving planning precision, facilitating prosthetic design and potentially forecasting clinical outcomes. The evidence to date indicates considerable promise, yet widespread clinical adoption remains limited by data, standardization, validation, ethical and workflow challenges. For prosthodontists and implantologists, embracing digital-AI technologies while maintaining critical oversight will be key. The future likely holds personalized implant care guided by AI-augmented decision support, robotic delivery, and integrated workflows—provided that clinical evidence continues to accumulate and regulatory, ethical and educational frameworks evolve in tandem. Artificial intelligence is poised to transform oral implantology by enhancing diagnostics, improving planning precision, facilitating prosthetic design and potentially forecasting clinical outcomes. The evidence to date indicates considerable promise, yet widespread clinical adoption remains limited by data, standardization, validation, ethical and workflow challenges. For prosthodontists and implantologists, embracing digital-AI technologies while maintaining critical oversight will be key. The future likely holds personalized implant care guided by AI-augmented decision support, robotic delivery, and integrated workflows—provided that clinical evidence continues to accumulate and regulatory, ethical and educational frameworks evolve in tandem.

References

1. Sikri A, Sikri J, Piplani V, Thakur Y. Applications of Artificial Intelligence in Dentistry: A Narrative Review. *South Asian Res J Oral Dent Sci.* 2024;6(1):1-10.
2. Khosravanifard B, Aghajani F, Ghaffari R. Artificial intelligence in implant dentistry: A comprehensive review. *J Oral Implantol.* 2022;48(5):415-424. doi:10.1563/aaid-joi-D-21-00213
3. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: Chances and challenges. *J Dent Res.* 2020;99(7):769-774. doi:10.1177/0022034520915714
4. Revilla-León M, Özcan M. Artificial intelligence in prosthetic dentistry: Concepts and future perspectives. *J Prosthet Dent.* 2019;121(4):576-584. doi:10.1016/j.jprost.2018.10.023
5. Liu L, Chen P, Wang L, Sun X, Yang X. Applications of artificial intelligence in dental implantology: A review. *Int J Oral Maxillofac Implants.* 2021;36(3):437-447. doi:10.11607/jomi.8615
6. Muc D, Cieślik M, Koczorowski R. Deep learning-based detection of mandibular canals in CBCT images for implantology. *Clin Oral Implants Res.* 2021;32(6):703-711. doi:10.1111/clr.13731

7. Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. *J Dent Res.* 2021;100(3):232-244. doi:10.1177/0022034520969115
8. Wirtz A, Lampert F. Machine learning for computer-aided implant planning: A systematic review. *Clin Oral Investig.* 2022;26(2):1411-1425. doi:10.1007/s00784-021-04244-5
9. Kwon TG, Hong J, Choi SY, Lee JY. Use of convolutional neural networks in implant dentistry: Automated detection of edentulous areas and anatomical landmarks in panoramic radiographs. *Clin Oral Implants Res.* 2022;33(3):282-290. doi:10.1111/clr.13846
10. Park WJ, Park JB. History and application of artificial intelligence in dentistry. *J Korean Assoc Oral Maxillofac Surg.* 2018;44(5):211-217. doi:10.5125/jkaoms.2018.44.5.211
11. Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Ariji E. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. *Oral Radiol.* 2020;36(4):337-343. doi:10.1007/s11282-019-00402-5
12. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental implant complications using deep learning algorithms: A systematic review. *J Clin Med.* 2020;9(11):3621. doi:10.3390/jcm9113621
13. Papaspyridakos P, Chen CJ, Singh M, Weber HP. Artificial intelligence in implant dentistry: Opportunities and limitations. *Compend Contin Educ Dent.* 2021;42(10):542-549.
14. Chang SW, Kim JA, Kim MJ, Lim SH, Kim JE. Deep learning model for automatic detection of dental implant position on panoramic radiographs. *Diagnostics.* 2022;12(3):765. doi:10.3390/diagnostics12030765
15. Ariji Y, Fukuda M, Kise Y, Nozawa M, Kuwada C, Funakoshi T, et al. Deep learning system for the detection of mandibular canal on panoramic radiographs. *Dentomaxillofac Radiol.* 2019;48(1):20180271. doi:10.1259/dmfr.20180271
16. Krois J, Wirtz A, Nienkemper M, Samek W, Schwendicke F. Artificial intelligence in oral and maxillofacial surgery: A scoping review. *J Craniomaxillofac Surg.* 2021;49(3):245-256. doi:10.1016/j.jcms.2020.12.007
17. Sikri A, Sikri J, Gupta R. Artificial Intelligence in Prosthodontics and Oral Implantology – A Narrative Review. *Global Academic Journal of Dentistry.* 2023;5(2):13-19.
18. Chen YW, Lin LM, Hung CC, Yen YS, Lin PT. Automated assessment of alveolar bone loss around implants using deep learning and panoramic images. *Clin Oral Implants Res.* 2022;33(7):712-720. doi:10.1111/clr.13904
19. Kim DH, Jeong SN. Diagnostic performance of a deep learning algorithm for detecting peri-implantitis using periapical radiographs. *Diagnostics.* 2020;10(11):952. doi:10.3390/diagnostics10110952
20. Revilla-León M, Gómez-Polo M, Pérez-Barquero JA, Att W, Özcan M. Artificial intelligence applications in implant-supported prosthodontics: A systematic review. *J Prosthet Dent.* 2023;130(2):265-273. doi:10.1016/j.prosdent.2022.05.021
21. Gursoy B, De Stefano M, Ozcan M. The role of AI in digital workflows for implant-supported prostheses. *Dent Mater J.* 2023;42(3):309-317. doi:10.4012/dmj.2022-066
22. Suzuki S, Tanimoto K, Ariji Y, Ariji E. Artificial intelligence in dental imaging for implant treatment planning. *Int J Oral Maxillofac Implants.* 2020;35(5):1025-1032. doi:10.11607/jomi.8264
23. Schwendicke F, El Osta N, Golla T, Chaurasia A, Meyer-Lueckel H. Machine learning for decision-making in implant dentistry: Predictive modeling of implant survival. *Clin Oral Implants Res.* 2020;31(12):1182-1190. doi:10.1111/clr.13669
24. Jeong SN, Kim DH. Deep learning-based prediction model for implant success and failure using clinical parameters. *J Periodontal Implant Sci.* 2021;51(5):333-343. doi:10.5051/jpis.2101880220